Research
Overview
I am interested in machine learning and artificial intelligence, both from a theoretical and a practical standpoint (through research on knowledge transferability, model interpretability, uncertainty, and knowledge representation, and applications in bioinformatics or optimization). Additionally, I am interested in looking into the epistemological and ethical issues raised by the use of AI.
Keywords (in alphabetic order):
- AI epistemology and ethics
- autonomy
- (deep) machine learning
- epistemic and aleatoric uncertainty
- interpretability
- neuro-symbolic AI
- transfer learning
Scientific supervision
PhD supervision
- A. Khudiyev (oct. 2022 - directors: A. Jeannin-Girardon, Latafat Gardashova / Neuro-symbolic artificial intelligence
- Q. Christoffel (oct. 2021 - director: A. Deruyver) / uncertainty of machine learning models and knowledge injection
-
H. Khodji (oct. 2020 - directors: J. Thompson & P Collet) / Characterization of the transferability of latent features in deep neural networks. Application to gene error prediction.
- N. Scalzitti (Dec. 2018 - Sept. 2021, directors: J. Thompson & P. Collet) / New gene annotation and detection strategies for genome sequencing projects, by massively parallel coupled artificial intelligence and artificial evolution algorithms
- R. Orhand (Oct. 2018 - Nov. 2022, directors: P. Parrend & P. Collet) / Towards autonomous computers by combination of artificial intelligence and artificial evolution
- A. Ouskova (Aug. 2018 - May 2022, directors: P. Parrend & P. Collet) / Evolutionary optimization of refrigeration systems using magnetocaloric alloy
Apprenticeship training (graduate students)
- 2016-2018
- A. Bruyant / Robust Anonynous DAta Records
- M. Haegelin / GPU based signal processing optimization for mass spectrometry data
Internships
- 2022
- L. Wehrli / Explaining machine learning black-boxes (comp. sci. grad. student) (main advisor: S. Mark-Swecker)
- 2021
- Q. Christoffel / Deep Bayesian neural networks (comp. sci. grad. student)
- 2020
- H. Khodji / Quantification of the transferability of learned features in deep neural networks (comp. sci. grad. student)
- Q. Christoffel / Explicability of convolutional neural networks using evolutionary algorithms (comp. sci. grad. student)
- 2019
- A. Oury Bah / Hybrid machine learning : combining deep learning models with evolutionary algorithms (comp. sci. grad. student)
- A. Hutt / quantitative measure of feature transfer in deep neural networks (comp. sci. grad. student)
- C. Mengel / ATLAS : Algebraic TopoLogy for dAta Similarity (math. grad. student)
- 2018
- N. Bannour / Anomaly detection in time series data (main supervisor : N. Lachiche)
- 2017
- N. Demeure / B cell regulatory networks modeling (comp. sci. grad. student)
- F. Delhomme (math. grad. student) and Melchior Villa (comp. sci. grad. student) / Concentric multi-valued map (co-supervisor: Dr B. Sauvage)
Research projects (~150 hrs)
- 2020-21
- N. Mountasir / Comparing uncertainty quantifications in deep neural networks / co-supervisors : S. Marc-Zwecker and D. Bernhard (comp. sci. grad. student)
- E. Chetouane / Semantic and artificial neural networks (comp. sci. grad. student)
- 2019-20
- Q. Christoffel / Explicability of convolutional neural networks using evolutionary algorithms (comp. sci. grad. student)
- F. Nawfal / Comparative study of transfer learning methods (comp. sci. grad. student)
- 2018-19
- E. Kalbé / Collision detection in virtual environments: comparison of cognitive and geometric approaches (comp. sci. grad. student)
- G. Mukunde / Deep learning for protein properties identification / co-supervisors: O. Poch & L. Moulinier (comp. sci. grad. student)
- M. Haller / Deep learning for protein fold classification / co-supervisor: C. Mayer (comp. sci. grad. student)
- A. Hutt / Multi-task learning, transfer learning and adaptability of deep neural networks / co-supervisor: R. Orhand (comp. sci. grad. student)
- 2017-18
- E. Kalbé / Non-representational approaches for agent behavior modeling (comp. sci. grad. student)
- M. Seyer / Non-representational approaches for agent behavior modeling (comp. sci. grad. student)
Scientific dissemination
- “Intelligence artificielle, éthique et santé”, intervention à la conférence IA de l’ESBS “L’IA au service de la santé ; éthique et cas d’usages”, janvier 2023
- “Intelligence artificielle : de la technique aux enjeux sociaux”, intervention à la journée doctorale de l’université de Haute Alsace à Mulhouse, juin 2022
- “Quelle intégration des systèmes intelligents dans nos sociétés ?”, intervention à la table ronde Intelligence artificielle et démocratie, vers quels interactions et enjeux du jardin des sciences de l’Université de Strasbourg, feb. 2020
- “Transfer learning: review and recent advances” (Nov. 2019), workshop of the ICube research axis Data Science and Artificial Intelligence (DSAI)
- Talk at the “Journées Système 2018” in Strasbourg (Oct. 2018): “Theoretical and practical challenges of machine learning” (video, in french)
- Hosting of the complex system stand at the Science Week (“fête de la science”) / With P. Collet (2016 and 2017)